Several viruses are capable of causing hepatic inflammation. These include the Epstein-Barr virus, cytomegalovirus, herpes simplex virus, mumps, rubella, rubeola and varicella-zoster viruses, yellow fever virus, Coxsackie viruses, and adenoviruses. In most cases, infection or inflammation of the liver is part of a systemic infection with the above agents. In addition, there are a number of viruses that are primarily hepatotropic and are given alphabetical designations: hepatitis A–E. Several other viruses that were initially thought to cause posttransfusion hepatitis, including hepatitis G virus or GBV-C and SEN viruses, are not currently believed to be human pathogens. Of the truly hepatotropic viruses, hepatitis A and hepatitis E generally produce self-limited disease, although fulminant hepatic failure has been reported in up to 1%–2% of infected individuals. Hepatitis D virus (or the delta agent) can produce coinfections in patients who are infected with hepatitis B, but it appears to be incapable of causing serious disease in the absence of hepatitis B virus. Hepatitis B and C viruses are arguably the most important viruses of this group. In addition to acute infections, exposure to these viruses frequently results in a chronic persistent infection that may remain asymptomatic or lead to cirrhosis, liver failure, and hepatocellular carcinoma. Chronic infections with hepatitis C virus are currently responsible for an increasing percentage of liver transplantations performed in the United States and elsewhere. Because of the large number of patients worldwide who suffer from chronic infections with these two agents, they are arguably the most important viral cause of carcinoma in the world. In recent years, we have learned a great deal about the biology of hepatitis B and C viruses and have gained increasing knowledge of the pathophysiology of the disease they cause in the liver. Concomitant with our understanding of these processes has been the development of a variety of therapeutic modalities, ranging from relatively specific, classic antiviral agents (including lamivudine, adefovir, tenofovir, ribavirin, and a number of new investigational agents) to drugs such as interferon-α, which also have immunomodulatory effects. Vaccine strategies likewise play an important role in preventing hepatitis B. The rapidity of new developments in our understanding of the pathophysiology and management of infections due to hepatitis B and C
make it increasingly difficult for the practicing physician to keep up with the field.

For these reasons, we have assembled in this issue of the *Infectious Disease Clinics of North America* a series of articles written by experts in the field of hepatitis B and C infections. Taken in aggregate, they provide useful, lucid, up-to-date information on the management of hepatitis B and C infections.

Robert C. Moellering, Jr, MD
*Harvard Medical School*
*Department of Medicine*
*Beth Israel Deaconess Medical Center*
*110 Francis Street, Suite 6A*
*Boston, MA 02215, USA*

_E-mail address:_ rmoeller@bidmc.harvard.edu