Index

Note: Page numbers of article titles are in boldface type.

A

Acid(s)
boronic (See Boronic acid(s))

Acinetobacter baumannii
carbapenem-resistant
in the community, 381–382

Agents of last resort, 391–414. See also Polymyxin(s)

Agriculture
antibiotics and, 317–318

AIDS
antibiotic-resistant infections in, 478–481

Aminoglycoside(s)
in ESBL–producing Enterobacteriaceae infections management
in hospital settings, 358–359

Aminoglycoside resistance
acquired 16S–RMTase gram-negative bacteria related to, 523–537 (See also 16S ribosomal RNA methyltransferases (RMTase), in gram-negative bacteria)
introduction, 523–524
mechanisms of, 524–525

Antibiotic(s)
agriculture and, 317–318
new
in ASPs for MDR infections, 548

Antibiotic resistance
evolution of, 314–317
global and local impact of, 313–322
societal burden of, 318–319
in Streptococcus pneumoniae
in HIV patients, 480

Antibiotic-resistant infections
in Enterococcus spp.
in HIV patients, 480
in HIV and AIDS, 478–481
in immunocompromised hosts, 465–489 (See also Immunocompromised hosts, antibiotic-resistant infections in)
in SOT
treatment challenges, 466–472

Antimicrobial stewardship
in prevention of polymyxin resistance, 404–405

Antimicrobial stewardship programs (ASPs)
in MDR infections management
costs related to, 542–543

Infect Dis Clin N Am 30 (2016) 553–565
http://dx.doi.org/10.1016/S0891-5520(16)30036-8 id.theclinics.com
0891-5520/16/$ – see front matter
Antimicrobial (continued)
 evidence of, 543–548
 evolving role of, 539–551
 impact of, 542–543
 introduction, 539–540
 need for, 540–541
 new antimicrobial agents in, 548
 success of
collaboration in, 541–542
Antimicrobial susceptibility testing (AST) methods
 in defining resistance to gram-negatives in clinical microbiology laboratory, 324–325
 armA gene, 527–529
 ASPs. See Antimicrobial stewardship programs (ASPs)
 AST methods. See Antimicrobial susceptibility testing (AST) methods
Avibactam
 in the clinic, 445–447

B
Bacillus(i)
 gram-negative
 polymyxin-resistant
 clinical epidemiology of, 395–398
Bacteremia
 MRSA and
treatment of, 491–507 (See also Methicillin-resistant Staphylococcus aureus (MRSA), bacteremia due to)
Bacteria
 MDR
 in the community, 377–390 (See also Multidrug-resistant (MDR) bacteria)
 introduction, 377–378
Bisthiazolidine (BTZ) inhibitors
 in preclinical development, 457
 blaCTX–producing Escherichia coli
 in the community
 clonal expansion of, 352
Blue-Carba test
 in defining resistance to gram-negatives in clinical microbiology laboratory, 325
Boronic acid(s)
 in preclinical development, 449–452
 Boronic acid β-lactamase inhibitors
 making great strides in, 448–449

C
Carba NP test
 in defining resistance to gram-negatives in clinical microbiology laboratory, 325
Carbapenem(s)
 in ESBL–producing Enterobacteriaceae infections management
 in hospital settings, 355–356
Carbapenemase
 rapid biochemical tests in detection of
 in defining resistance to gram-negatives in clinical microbiology laboratory, 325
Carbapenem-producing enterobacteriaceae
 in the community, 384
Carbapenem-resistant Acinetobacter baumannii
 in the community, 381–382
Ceftaroline
 in bacteremia-related MRSA management, 497–498
Ceftolozane-tazobactam, 443–445
Cephalosporin(s)
 in ESBL–producing Enterobacteriaceae infections management
 in hospital settings, 356
 fifth-generation
 in bacteremia-related MRSA management, 497–498
 siderophore
 in clinical development, 455–456
 3'-thiobenzoyl
 in preclinical development, 456
Cephamycins
 in ESBL–producing Enterobacteriaceae infections management
 in hospital settings, 357
Clavam(s)
 novel
 in preclinical development, 452–453
Clinic(s)
 new β-lactamase inhibitors in, 441–464 (See also specific agents and β-lactamase inhibitors, new, in the clinic)
Clinical microbiology laboratory
 in defining resistance to gram-negatives
 changing role of, 323–345
 discussion, 333
 introduction, 323–324
 methods in, 324–330
 LAMP, 327–328
 MALDI-TOF MS, 330
 microarrays, 329
 NGS, 328
 rapid biochemical tests to detect ESBL and carbapenemase producers, 323
 single and multiplex endpoint PCRs, 325–326
 single and multiplex real-time PCRs, 326–327
 standard AST procedures, 324–325
 WGS, 328–329
 technologies in development, 330–333
 FilmArray, 332
 FISH, 332
 microfluidic technologies, 331
 nanotechnology, 331
 PCR/ESI MS, 332–333
Clinical (continued)
rapid antimicrobial susceptibility testing, 330–331
rapid WGS, 332
Colistin, 391–414. See also Polymyxin(s)
Community(ies)
clonal expansion of blaCTX-M–producing Escherichia coli in, 352
MDR bacteria in, 377–390 (See also Multidrug-resistant (MDR) bacteria, in the community)
Community-associated infections
MDR bacteria and, 378
CTX-M–producing Escherichia coli
in nonhospital settings
outbreak of, 350–352

D
Dalbavancin
in bacteremia-related MRSA management, 496
Daptomycin
in bacteremia-related MRSA management, 496–497
combination therapy with, 500–503
resistance to VRE infections
mechanisms in mediation of, 421–423
in VRE management
combination therapy with, 427–428
Diazabicyclooctanones, 445
in the clinic
pioneer, 445–447
on the horizon, 448
in preclinical development, 448
DR-TB. See Drug-resistant tuberculosis (DR-TB)
Drug-resistant tuberculosis (DR-TB), 509–522
background of, 509–510
treatment of
clinical drug development in
alternate approaches to, 515–516
clinical trials in, 513–515
current approaches, 510–513
resistance mechanisms in, 510–511
second-line agents in, 511–513
standard therapy in, 511
Dual β-lactam combinations
in VRE management, 427

Ε
Enterobacteriaceae
carbapenem-producing
in the community, 384
ESBLs produced by
in the community, 383–384
Enterobacteriaceae infections

ESBL–producing
continuing plague of, 347–375 (See also Extended-spectrum β-lactamase (ESBL)–producing Enterobacteriaceae infections)

Enterococcal infections, 417–418
Enterococci
vancomycin-resistant (See Vancomycin-resistant enterococci (VRE))

Enterococcus spp.
antibiotic resistance in
in HIV patients, 480

ESBL NDP test
in defining resistance to gram-negatives in clinical microbiology laboratory, 325

ESBLs. See Extended-spectrum β-lactamase (ESBLs)

Escherichia coli

blaCTX-M–producing
in the community
clonal expansion of, 352

CTX-M–producing
in nonhospital settings
outbreak of, 350–352

Extended-spectrum β-lactamase(s) (ESBLs)

emergence of, 348–349
enterobacteriaceae producing
in the community, 383–384
isolated impact on patients’ clinical outcomes, 355
rapid biochemical tests in detection of
in defining resistance to gram-negatives in clinical microbiology laboratory, 325
worldwide prevalence of, 349

Extended-spectrum β-lactam (ESBL) infections
in HIV patients, 481

Extended-spectrum β-lactam (ESBL)–producing Enterobacteriaceae infections. See also specific infections
in ambulatory settings
treatment of, 359
continuing plague of, 347–375
introduction, 348
future perspective on, 360
in hospital settings
treatment of, 355–359
aminoglycosides in, 358–359
β–lactam–β-lactamase inhibitors combinations in, 357–358
carbapenems in, 355–356
cephalosporins in, 356
cephamycins in, 357
fluoroquinolones in, 356–357
polymyxins in, 359
tigecycline in, 359
introduction, 348
outside of hospital settings
predictors of, 353–355

SHVs
Extended-spectrum (continued)
 historic evolution of, 349–350
 TEM
 historic evolution of, 349–350

F
F51-1671
 in preclinical development, 456–457
F51-1686
 in preclinical development, 456–457
Fifth-generation cephalosporins
 in bacteremia-related MRSA management, 497–498
FilmArray
 in defining resistance to gram-negatives in clinical microbiology laboratory, 332
FISH. See Fluorescence in situ hybridization (FISH)
 Fluorescence in situ hybridization (FISH)
 in defining resistance to gram-negatives in clinical microbiology laboratory, 332
Fluoroquinolones
 in ESBL–producing Enterobacteriaceae infections management
 in hospital settings, 356–357
Fosfomycin
 in bacteremia-related MRSA management
 combination therapy with, 503

G
Glycopeptide(s)
 in bacteremia-related MRSA management, 492–497
Glycylcyclines
 resistant to VRE infections
 mechanisms in mediation of, 425
Gram-negative(s)
 resistance to
 changing role of clinical microbiology laboratory in defining, 323–345 (See also Clinical microbiology laboratory, in defining resistance to gram-negatives)
Gram-negative bacilli
 polymyxin-resistant
 clinical epidemiology of, 395–398

H
Health care–associated MDR infections, 378–379
HIV
 antibiotic resistance to Enterococcus spp. in patients with, 480
 antibiotic resistance to Streptococcus pneumoniae in patients with, 480
 antibiotic-resistant infections in patients with, 478–481
 ESBL pathogens in, 481
 MRSA in
 incidence and risk factors for, 479–480
I

Immune system
 host susceptibility to bacterial pathogens in, 466

Immunocompromised hosts
 antibiotic-resistant infections in, 465–489
 HIV and AIDS, 478–481 (See also AIDS; HIV)
 introduction, 465–466
 mortality risks associated with, 472
 treatment challenges, 465–489
 neutropenic host, 472–478 (See also Neutropenic host)

Infection(s). See also specific types
 antibiotic resistant
 in immunocompromised hosts, 465–489 (See also Immunocompromised hosts, antibiotic-resistant infections in)
 enterococcal, 417–418
 MDR
 management of
 ASPs in, 539–551 (See also Antimicrobial stewardship programs (ASPs), in MDR infections management)

Infection control
 in prevention of polymyxin resistance, 404

L

β-Lactam(s)
 changing partner in
 ceftolozane-tazobactam, 443–445

β-Lactamase inhibitor(s)
 boronic acid
 making great strides in, 448–449
 development of
 obstacles in, 442–443
 new
 in the clinic, 441–464

β-Lactamase inhibitor medicinal chemistry
 future of, 445

β-Lactam-avibactam combinations
 resistance to, 447–448

β-Lactam–β-lactamase inhibitor combinations
 current clinically available
 fall of, 441–442
 in ESBL–producing Enterobacteriaceae infections management
 in hospital settings, 357–358

β-Lactam combinations
 dual
 in VRE management, 427

LAMP. See Loop-mediated isothermal amplification (LAMP)

Lipoglycopeptides
 resistant to VRE infections
 mechanisms in mediation of, 424
Lipoglycopeptides (continued)
 semisynthetic
 in bacteremia-related MRSA management, 493–496
Loop-mediated isothermal amplification (LAMP)
 in defining resistance to gram-negatives in clinical microbiology laboratory, 327–328

M
MALDI-TOF MS. See Matrix-assisted laser desorption ionization–time of flight mass spectroscopy (MALDI-TOF MS)
Matrix-assisted laser desorption ionization–time of flight mass spectroscopy (MALDI-TOF MS)
 in defining resistance to gram-negatives in clinical microbiology laboratory, 330
MDR. See Multidrug-resistance (MDR); Multidrug-resistant (MDR)
MDROs. See Multidrug-resistant organisms (MDROs)
ME1071
 in preclinical development, 457
Metallo-β-lactamase–specific inhibitors
 in preclinical development, 457
Methicillin-resistant Staphylococcus aureus (MRSA)
 bacteremia due to
 introduction, 491–492
 treatment of, 491–507
 ceftaroline in, 497–498
 combination therapy in, 499–503
 dalbavancin in, 496
 daptomycin in, 496–497
 fifth-generation cephalosporins in, 497–498
 glycopeptides and semisynthetic lipoglycopeptides in, 492–497
 oritavancin in, 493, 496
 oxazolidinones in, 498–499
 telavancin in, 496
 tigecycline in, 499
 vancomycin in, 492–493
 in the community, 380
 in HIV patients
 incidence and risk factors for, 479–480
Microarray(s)
 in defining resistance to gram-negatives in clinical microbiology laboratory, 329
Microfluidic technologies
 in defining resistance to gram-negatives in clinical microbiology laboratory, 331
Monobactam(s)
 in preclinical development, 455
 as promising β-lactamase inhibitors, 453–454
MRSA. See Methicillin-resistant Staphylococcus aureus (MRSA)
Multidrug-resistance (MDR)
 costs related to, 542–543
 management of
 ASPs in, 540–541
 evidence of, 543–548
Multidrug-resistant (MDR) bacteria
in the community, 377–390
 carbapenem-producing enterobacteriaceae, 384
 carbapenem-resistant *Acinetobacter baumannii*, 381–382
 community-onset, 378
 enterobacteriaceae producing ESBLs, 383–384
 health care–associated, 378–379
 introduction, 377–378
 MDR *Pseudomonas aeruginosa*, 382–383
 MRSA, 380
 nosocomial infections, 378
 prevention of, 384–385
 transition from nosocomial to community pathogen, 379–380
 VRE, 380–381
 introduction, 377–378
Multidrug-resistant (MDR) infections
 management of
 ASPs in, 539–551 (See also Antimicrobial stewardship programs (ASPs), in MDR infections management)
Multidrug-resistant organisms (MDROs)
 morbidity and mortality associated with, 471–472
 in neutropenic hosts, 473–478
Multidrug-resistant (MDR) *Pseudomonas aeruginosa*
 in the community, 382–383

N
Nanotechnology
 in defining resistance to gram-negatives in clinical microbiology laboratory, 331
Neutropenic host, 472–478
 in cancer patients
 MDROs in
 prevalence of, 473–475
 febrile
 MDROs in
 risk factors for, 475–476
 inappropriate empiric antibiotics in, 476–477
 MDROs in
 morbidity and mortality associated with, 477–478
Next-generation sequencing (NGS)
 in defining resistance to gram-negatives in clinical microbiology laboratory, 328
NGS. See Next-generation sequencing (NGS)
Nosocomial infections
 MDR bacteria and, 378
NpmA, 531

O
16S ribosomal RNA methyltransferases (RMTase)
 emergence of, 523–537
 in gram-negative bacteria, 526–531
 armA gene, 527–529
16S (continued)
clinical implications of, 531–532
NpmA, 531
prevalence of, 531
RmtA, 529
RmtB, 529–530
RmtC, 530
RmtD, 530
RmtE, 530
RmtF, 530–531
RmtG, 531
RmtH, 531
16S–RMTase. See 16S ribosomal RNA methyltransferases (RMTase)
OP0595
on the horizon, 448
Oritavancin
in bacteremia-related MRSA management, 493, 496
Oxazolidinones
in bacteremia-related MRSA management, 498–499
resistance to VRE infections
mechanisms in mediation of, 423–424
P
PCR/ESI MS. See Polymerase chain reaction/electrospray ionization mass spectroscopy (PCR/ESI MS)
PCRs. See Polymerase chain reactions (PCRs)
Phosphonate(s)
in preclinical development, 453
Polymerase chain reaction(s) (PCRs)
in defining resistance to gram-negatives in clinical microbiology laboratory
single and multiplex endpoint, 325–326
single and multiplex real-time, 326–327
Polymerase chain reaction/electrospray ionization mass spectroscopy (PCR/ESI MS)
in defining resistance to gram-negatives in clinical microbiology laboratory, 332–333
Polymyxin(s), 391–414
as agents of last resort, 391–414
in ESBL–producing Enterobacteriaceae infections management
in hospital settings, 359
introduction, 391–393
mechanism of action of, 393
mechanisms of resistance of, 393–395
resistance to (See Polymyxin resistance)
Polymyxin B, 391–414
Polymyxin E, 391–414
Polymyxin resistance
prevention of, 404–405
antimicrobial stewardship in, 404–405
infection control in, 404
strategies to minimize, 398–404
combination therapy, 401–404
optimizing dosing regimens, 398–401
Polymyxin-resistant gram-negative bacilli
 clinical epidemiology of, 395–398
Postantibiotic era
 aversion of, 319
Pseudomonas aeruginosa
 MDR
 in the community, 382–383

R
Rapid antimicrobial susceptibility testing
 in defining resistance to gram-negatives in clinical microbiology laboratory, 330–331
Rapid biochemical tests
 in detection of ESBL and carbapenemase producers
 in defining resistance to gram-negatives in clinical microbiology laboratory, 325
Rapid whole-genome sequencing (WGS)
 in defining resistance to gram-negatives in clinical microbiology laboratory, 332
Relebactam
 on the horizon, 448
RG6080
 on the horizon, 448
RmtA, 529
RmtB-530, 529
RmtC, 530
RmtD, 530
RmtE, 530
RmtF, 530–531
RmtG, 531
RmtH, 531

S
S-649266
 in clinical development, 455–456
Semisynthetic lipoglycopeptides
 in bacteremia-related MRSA management, 493–496
SHVs
 historic evolution of, 349–350
Siderophore cephalosporin(s)
 in clinical development, 455–456
Single and multiplex endpoint polymerase chain reactions (PCRs)
 in defining resistance to gram-negatives in clinical microbiology laboratory, 325–326
Single and multiplex real-time polymerase chain reactions (PCRs)
 in defining resistance to gram-negatives in clinical microbiology laboratory, 326–327
Solid organ transplantation (SOT)
 antibiotic-resistant infections in
 inappropriate empiric antibiotics and, 471
 prevalence of, 467
 risk factors for, 467–471
 treatment challenges, 466–472
SOT. See Solid organ transplantation (SOT)
Standard antimicrobial susceptibility testing (AST) methods
 in defining resistance to gram-negatives in clinical microbiology laboratory, 324–325
Staphylococcus aureus
 methicillin-resistant (See Methicillin-resistant Staphylococcus aureus (MRSA))
Streptococcus pneumoniae
 antibiotic resistance in
 in HIV patients, 480
Streptogramins
 resistant to VRE infections
 mechanisms in mediation of, 424–425
Sulfone(s)
 novel
 in preclinical development, 452–453

T
Telavancin
 in bacteremia-related MRSA management, 496
TEM
 historic evolution of, 349–350
3’-Thiobenzoyl cephalosporins
 in preclinical development, 456
Tigecycline
 in bacteremia-related MRSA management, 499
 in ESBL–producing Enterobacteriaceae infections management
 in hospital settings, 359
Transplantation(s)
 solid organ
 antibiotic-resistant infections in (See also Solid organ transplantation (SOT))
 treatment challenges, 466–472
Trimethoprim-sulfamethoxazole resistance, 481
Tuberculosis (TB)
 drug-resistant, 509–522 (See also Drug-resistant tuberculosis (DR-TB))

V
Vancomycin
 in bacteremia-related MRSA management, 492–493
 combination therapy with, 499–500
Vancomycin-resistant enterococci (VRE), 415–439
 antibiotic resistance to, 421
 mechanisms in mediation of
 for daptomycin, 421–423
 for glycyclidones, 425
 for lipoglycopeptides, 424
 for oxazolidionones, 423–424
 for streptogramins, 424–425
 in the community, 380–381
 host colonization of, 418–419
 introduction, 415
profile of, 416–418

treatment of
 therapeutic strategies in, 425–430
 daptomycin combinations, 427–428
 dual β-lactam combinations, 427
 new strategies, 429–430

virulence factors, 419–421

VRE. See Vancomycin-resistance enterococci (VRE)

W

WGS. See Whole-genome sequencing (WGS)

Whole-genome sequencing (WGS)
 in defining resistance to gram-negatives in clinical microbiology laboratory, 328–329
 rapid WGS, 332