Advertisement
Review Article| Volume 36, ISSUE 4, P791-823, December 2022

Download started.

Ok

Management of Highly Resistant Gram-Negative Infections in the Intensive Care Unit in the Era of Novel Antibiotics

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Infectious Disease Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019. Available at: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf.

        • Tacconelli E.
        • Carrara E.
        • Savoldi A.
        • et al.
        Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis.
        Lancet Infect Dis. 2018; 18: 318-327
        • O'Neill J.
        Review on Antimicrobial Resistance Tackling drug-resistant infections globally: Final report and recommendations. AMR Review website.
        (Available at:https://amrreview.org/#:∼:text=%E2%80%9CThe%20Review%20on%20Antimicrobial%20Resistance,actions%20to%20tackle%20it%20internationally)
        Date: 2016
        (Accessed 2022 July 13)
        • World Health Organization
        WHO Publishes List of Bacteria for Which New Antibiotics are Urgently Needed.
        (Available from) ([Last accessed on 2022 July 13)
        • Clancy C.J.
        • Potoski B.A.
        • Buehrle D.
        • et al.
        Estimating the Treatment of Carbapenem-Resistant Enterobacteriaceae Infections in the United States Using Antibiotic Prescription Data.
        Open Forum Infect Dis. 2019; 6: ofz344
        • Clancy C.J.
        • Nguyen M.H.
        Estimating the size of the United States market for new antibiotics with activity against carbapenem-resistant Enterobacteriaceae.
        Antimicrob Agents Chemother. 2019; 63: e01733-19
        • Strich J.R.
        • Ricotta E.
        • Warner S.
        • et al.
        Pharmacoepidemiology of ceftazidime-avibactam use: a retrospective cohort anlaysis of 210 US hospitals.
        Clin Infect Dis. 2020; 72: 611-621
        • Clancy C.J.
        • Nguyen M.H.
        Buying Time: The AMR Action Fund and the State of Antibiotic Development in the United States 2020.
        Open Forum Infect Dis. 2020; 7: ofaa464
        • Tamma P.D.
        • Aitken S.L.
        • Bonomo R.A.
        • et al.
        Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum beta-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa).
        Clin Infect Dis. 2021; 72: e169-e183
        • Tamma P.D.
        • Aitken S.L.
        • Bonomo R.A.
        • et al.
        Infectious Diseases Society of America Guidance on the Treatment of AmpC β-lactamase producing Enterobacterales, Carbapenem-resistant Acinetobacter baumainnii, and Stenotrophomas maltophilia infections.
        Clin Infect Dis. 2022; 74: 2089-2114
        • Paul M.
        • Carrara E.
        • Retamar P.
        • et al.
        European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European Society of Intensive Care Medicine).
        Clin Microbiol Infect. 2022; 28: 521-547
        • Lawandi A.
        • Yek C.
        • Kadri S.S.
        IDSA guidance and ESCMID guidelines: complementary approaches toward a care standard for MDR Gram-negative infections.
        Clin Microbiol Infect. 2022; 28: 465-469
        • McCreary E.K.
        • Heil E.L.
        • Tamma P.D.
        New Perspectives on Antimicrobial Agents: Cefiderocol.
        Antimicrob Agents Chemother. 2021; 65: e0217120
        • Ito A.
        • Sato T.
        • Ota M.
        • et al.
        In Vitro Antibacterial Properties of Cefiderocol, a Novel Siderophore Cephalosporin, against Gram-Negative Bacteria.
        Antimicrob Agents Chemother. 2018; 62: e01454-17
        • Tamma P.D.
        • Doi Y.
        • Bonomo R.A.
        • et al.
        Antibacterial Resistance Leadership G. A Primer on AmpC beta-Lactamases: Necessary Knowledge for an Increasingly Multidrug-resistant World.
        Clin Infect Dis. 2019; 69: 1446-1455
        • Eliopoulos G.M.
        Induction of beta-lactamases.
        J Antimicrob Chemother. 1988; 22: 37-44
        • Bennett P.M.
        • Chopra I.
        Molecular basis of beta-lactamase induction in bacteria.
        Antimicrob Agents Chemother. 1993; 37: 153-158
        • Jacobson K.L.
        • Cohen S.H.
        • Inciardi J.F.
        • et al.
        The relationship between antecedent antibiotic use and resistance to extended-spectrum cephalosporins in group I beta-lactamase-producing organisms.
        Clin Infect Dis. 1995; 21: 1107-1113
        • Lindberg F.
        • Westman L.
        • Normark S.
        Regulatory components in Citrobacter freundii ampC beta-lactamase induction.
        Proc Natl Acad Sci U S A. 1985; 82: 4620-4624
        • Underwood S.
        • Avison M.B.
        Citrobacter koseri and Citrobacter amalonaticus isolates carry highly divergent beta-lactamase genes despite having high levels of biochemical similarity and 16S rRNA sequence homology.
        J Antimicrob Chemother. 2004; 53: 1076-1080
        • Petrella S.
        • Clermont D.
        • Casin I.
        • et al.
        Novel class A beta-lactamase Sed-1 from Citrobacter sedlakii: genetic diversity of beta-lactamases within the Citrobacter genus.
        Antimicrob Agents Chemother. 2001; 45: 2287-2298
        • Matsen J.M.
        • Blazevic D.J.
        • Ryan J.A.
        • et al.
        Characterization of indole-positive Proteus mirabilis.
        Appl Microbiol. 1972; 23: 592-594
        • Papp-Wallace K.M.
        • Bethel C.R.
        • Caillon J.
        • et al.
        Beyond Piperacillin-Tazobactam: Cefepime and AAI101 as a Potent beta-Lactam-beta-Lactamase Inhibitor Combination.
        Antimicrob Agents Chemother. 2019; 63: e00105-e00119
        • Endimiani A.
        • Doi Y.
        • Bethel C.R.
        • et al.
        Enhancing resistance to cephalosporins in class C beta-lactamases: impact of Gly214Glu in CMY-2.
        Biochemistry. 2010; 49: 1014-1023
        • Drawz S.M.
        • Papp-Wallace K.M.
        • Bonomo R.A.
        New beta-lactamase inhibitors: a therapeutic renaissance in an MDR world.
        Antimicrob Agents Chemother. 2014; 58: 1835-1846
        • Bush K.
        • Bradford P.A.
        Interplay between beta-lactamases and new beta-lactamase inhibitors.
        Nat Rev Microbiol. 2019; 17: 295-306
        • Hilty M.
        • Sendi P.
        • Seiffert S.N.
        • et al.
        Characterisation and clinical features of Enterobacter cloacae bloodstream infections occurring at a tertiary care university hospital in Switzerland: is cefepime adequate therapy?.
        Int J Antimicrob Agents. 2013; 41: 236-249
        • Tamma P.D.
        • Girdwood S.C.
        • Gopaul R.
        • et al.
        The use of cefepime for treating AmpC beta-lactamase-producing Enterobacteriaceae.
        Clin Infect Dis. 2013; 57: 781-788
        • Choi S.H.
        • Lee J.E.
        • Park S.J.
        • et al.
        Emergence of antibiotic resistance during therapy for infections caused by Enterobacteriaceae producing AmpC beta-lactamase: implications for antibiotic use.
        Antimicrob Agents Chemother. 2008; 52: 995-1000
        • Chow J.W.
        • Fine M.J.
        • Shlaes D.M.
        • et al.
        Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy.
        Ann Intern Med. 1991; 115: 585-590
        • Kaye K.S.
        • Cosgrove S.
        • Harris A.
        • et al.
        Risk factors for emergence of resistance to broad-spectrum cephalosporins among Enterobacter spp.
        Antimicrob Agents Chemother. 2001; 45: 2628-2630
        • Kohlmann R.
        • Bahr T.
        • Gatermann S.G.
        Species-specific mutation rates for ampC derepression in Enterobacterales with chromosomally encoded inducible AmpC beta-lactamase.
        J Antimicrob Chemother. 2018; 73: 1530-1536
        • Liu C.
        • Wang X.
        • Chen Y.
        • et al.
        Three Yersinia enterocolitica AmpD Homologs Participate in the Multi-Step Regulation of Chromosomal Cephalosporinase, AmpC.
        Front Microbiol. 2016; 7: 1282
        • Seoane A.
        • Francia M.V.
        • Garcia Lobo J.M.
        Nucleotide sequence of the ampC-ampR region from the chromosome of Yersinia enterocolitica.
        Antimicrob Agents Chemother. 1992; 36: 1049-1052
        • Girlich D.
        • Naas T.
        • Bellais S.
        • et al.
        Heterogeneity of AmpC cephalosporinases of Hafnia alvei clinical isolates expressing inducible or constitutive ceftazidime resistance phenotypes.
        Antimicrob Agents Chemother. 2000; 44: 3220-3223
        • Tamma P.D.
        • Rodriguez-Bano J.
        The Use of Noncarbapenem beta-Lactams for the Treatment of Extended-Spectrum beta-Lactamase Infections.
        Clin Infect Dis. 2017; 64: 972-980
        • Hancock R.E.
        • Bellido F.
        Antibacterial in vitro activity of fourth generation cephalosporins.
        J Chemother. 1996; 8: 31-36
        • Negri M.C.
        • Baquero F.
        In vitro selective concentrations of cefepime and ceftazidime for AmpC beta-lactamase hyperproducer Enterobacter cloacae variants.
        Clin Microbiol Infect. 1999; 5: S25-S28
        • Harris P.N.
        • Wei J.Y.
        • Shen A.W.
        • et al.
        Carbapenems versus alternative antibiotics for the treatment of bloodstream infections caused by Enterobacter, Citrobacter or Serratia species: a systematic review with meta-analysis.
        J Antimicrob Chemother. 2016; 71: 296-306
        • Sanders C.C.
        • Bradford P.A.
        • Ehrhardt A.F.
        • et al.
        Penicillin-binding proteins and induction of AmpC beta-lactamase.
        Antimicrob Agents Chemother. 1997; 41: 2013-2015
        • Weber D.A.
        • Sanders C.C.
        Diverse potential of beta-lactamase inhibitors to induce class I enzymes.
        Antimicrob Agents Chemother. 1990; 34: 156-158
        • Livermore D.M.
        • Oakton K.J.
        • Carter M.W.
        • et al.
        Activity of ertapenem (MK-0826) versus Enterobacteriaceae with potent beta-lactamases.
        Antimicrob Agents Chemother. 2001; 45: 2831-2837
        • Siedner M.J.
        • Galar A.
        • Guzman-Suarez B.B.
        • et al.
        Cefepime vs other antibacterial agents for the treatment of Enterobacter species bacteremia.
        Clin Infect Dis. 2014; 58: 1554-1563
        • Tan S.H.
        • Ng T.M.
        • Chew K.L.
        • et al.
        Outcomes of treating AmpC-producing Enterobacterales bacteraemia with carbapenems vs. non-carbapenems.
        Int J Antimicrob Agents. 2020; 55: 105860
        • Barnaud G.
        • Benzerara Y.
        • Gravisse J.
        • et al.
        Selection during cefepime treatment of a new cephalosporinase variant with extended-spectrum resistance to cefepime in an Enterobacter aerogenes clinical isolate.
        Antimicrob Agents Chemother. 2004; 48: 1040-1042
        • Song W.
        • Moland E.S.
        • Hanson N.D.
        • et al.
        Failure of cefepime therapy in treatment of Klebsiella pneumoniae bacteremia.
        J Clin Microbiol. 2005; 43: 4891-4894
        • Limaye A.P.
        • Gautom R.K.
        • Black D.
        • et al.
        Rapid emergence of resistance to cefepime during treatment.
        Clin Infect Dis. 1997; 25: 339-340
        • Charrel R.N.
        • Pages J.M.
        • De Micco P.
        • et al.
        Prevalence of outer membrane porin alteration in beta-lactam-antibiotic-resistant Enterobacter aerogenes.
        Antimicrob Agents Chemother. 1996; 40: 2854-2858
        • Fung-Tomc J.C.
        • Gradelski E.
        • Huczko E.
        • et al.
        Differences in the resistant variants of Enterobacter cloacae selected by extended-spectrum cephalosporins.
        Antimicrob Agents Chemother. 1996; 40: 1289-1293
      2. Procter and Gamble Pharmaceuticals, Inc. MACROBID - nitrofurantoin monohydrate and nitrofurantoin, macrocrystalline capsule [package insert]. Available at: www.accessdata.fda.gov/drugsatfda_docs/label/2009/020064s019lbl.pdf. Accessed October 24, 2022.

        • U.S. Food and Drug Administration
        MONUROL (fosfomycin tromethamine) SACHET [package insert].
        (Available at:) (Accessed 5 August 2020)
        • Huttner A.
        • Kowalczyk A.
        • Turjeman A.
        • et al.
        Effect of 5-Day Nitrofurantoin vs Single-Dose Fosfomycin on Clinical Resolution of Uncomplicated Lower Urinary Tract Infection in Women: A Randomized Clinical Trial.
        JAMA. 2018; 319: 1781-1789
        • Agwuh K.N.
        • MacGowan A.
        Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines.
        J Antimicrob Chemother. 2006; 58: 256-265
        • Fox M.T.
        • Melia M.T.
        • Same R.G.
        • et al.
        A Seven-Day Course of TMP-SMX May Be as Effective as a Seven-Day Course of Ciprofloxacin for the Treatment of Pyelonephritis.
        Am J Med. 2017; 130: 842-845
        • Jernigan J.A.
        • Hatfield K.M.
        • Wolford H.
        • et al.
        Multidrug-Resistant Bacterial Infections in U.S. Hospitalized Patients, 2012-2017.
        N Engl J Med. 2020; 382: 1309-1319
        • Robberts F.J.
        • Kohner P.C.
        • Patel R.
        Unreliable extended-spectrum beta-lactamase detection in the presence of plasmid-mediated AmpC in Escherichia coli clinical isolates.
        J Clin Microbiol. 2009; 47: 358-361
      3. Clinical and Laboratory Standards Institute. M100: performance standards for antimicrobial susceptibility testing. 31st edition. Wayne (PA): Clinical and Laboratory Standards Institute; 2021.

        • Tamma P.D.
        • Humphries R.M.
        PRO: Testing for ESBL production is necessary for ceftriaxone-non-susceptible Enterobacterales: perfect should not be the enemy of progress.
        JAC Antimicrob Resist. 2021; 3: dlab019
        • Mathers A.J.
        • Lewis J.S.
        • CON 2nd.,
        Testing for ESBL production is unnecessary for ceftriaxone-resistant Enterobacterales.
        JAC Antimicrob Resist. 2021; 3: dlab020
        • Tamma P.D.
        • Sharara S.L.
        • Pana Z.D.
        • et al.
        Molecular Epidemiology of Ceftriaxone Non-Susceptible Enterobacterales Isolates in an Academic Medical Center in the United States.
        Open Forum Infect Dis. 2019; 6: ofz353
        • Haidar G.
        • Philips N.J.
        • Shields R.K.
        • et al.
        Ceftolozane-Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infections: Clinical Effectiveness and Evolution of Resistance.
        Clin Infect Dis. 2017; 65: 110-120
        • Tamma P.D.
        • Smith T.T.
        • Adebayo A.
        • et al.
        Prevalence of bla CTX-M Genes in Gram-Negative Bloodstream Isolates across 66 Hospitals in the United States.
        J Clin Microbiol. 2021; 59: e00127-21
        • Bush K.
        • Bradford P.A.
        Epidemiology of beta-Lactamase-Producing Pathogens.
        Clin Microbiol Rev. 2020; 33: e00047-e19
        • Bush K.
        • Jacoby G.A.
        Updated functional classification of beta-lactamases.
        Antimicrob Agents Chemother. 2010; 54: 969-976
        • Castanheira M.
        • Farrell S.E.
        • Krause K.M.
        • et al.
        Contemporary diversity of beta-lactamases among Enterobacteriaceae in the nine U.S. census regions and ceftazidime-avibactam activity tested against isolates producing the most prevalent beta-lactamase groups.
        Antimicrob Agents Chemother. 2014; 58: 833-838
        • Castanheira M.
        • Simner P.J.
        • Bradford P.A.
        Extended-spectrum beta-lactamases: an update on their characteristics, epidemiology and detection.
        JAC Antimicrob Resist. 2021; 3: dlab092
        • Harris P.N.A.
        • Tambyah P.A.
        • Lye D.C.
        • et al.
        Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With E coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial.
        JAMA. 2018; 320: 984-994
        • Henderson A.
        • Paterson D.L.
        • Chatfield M.D.
        • et al.
        Association between minimum inhibitory concentration, beta-lactamase genes and mortality for patients treated with piperacillin/tazobactam or meropenem from the MERINO study.
        Clin Infect Dis. 2020; 73: e3842-e3850
        • Harris P.N.
        • Yin M.
        • Jureen R.
        • et al.
        Comparable outcomes for beta-lactam/beta-lactamase inhibitor combinations and carbapenems in definitive treatment of bloodstream infections caused by cefotaxime-resistant Escherichia coli or Klebsiella pneumoniae.
        Antimicrob Resist Infect Control. 2015; 4: 14
        • Livermore D.M.
        • Andrews J.M.
        • Hawkey P.M.
        • et al.
        Are susceptibility tests enough, or should laboratories still seek ESBLs and carbapenemases directly?.
        J Antimicrob Chemother. 2012; 67: 1569-1577
        • Zhou M.
        • Wang Y.
        • Liu C.
        • et al.
        Comparison of five commonly used automated susceptibility testing methods for accuracy in the China Antimicrobial Resistance Surveillance System (CARSS) hospitals.
        Infect Drug Resist. 2018; 11: 1347-1358
        • Paterson D.L.
        • Henderson A.
        • Harris P.N.A.
        Current evidence for therapy of ceftriaxone-resistant Gram-negative bacteremia.
        Curr Opin Infect Dis. 2020; 33: 78-85
        • Livermore D.M.
        • Day M.
        • Cleary P.
        • et al.
        OXA-1 beta-lactamase and non-susceptibility to penicillin/beta-lactamase inhibitor combinations among ESBL-producing Escherichia coli.
        J Antimicrob Chemother. 2019; 74: 326-333
        • Wang R.
        • Cosgrove S.E.
        • Tschudin-Sutter S.
        • et al.
        Cefepime Therapy for Cefepime-Susceptible Extended-Spectrum beta-Lactamase-Producing Enterobacteriaceae Bacteremia.
        Open Forum Infect Dis. 2016; 3: ofw132
        • Rodríguez-Baño J.
        • Navarro M.D.
        • Retamar P.
        • et al.
        Extended-Spectrum Beta-Lactamases-Red Espanola de Investigacion en Patologia Infecciosa/Grupo de Estudio de Infeccion Hospitalaria G. beta-Lactam/beta-lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli: a post hoc analysis of prospective cohorts.
        Clin Infect Dis. 2012; 54: 167-174
        • Ng T.M.
        • Khong W.X.
        • Harris P.N.
        • et al.
        Empiric Piperacillin-Tazobactam versus Carbapenems in the Treatment of Bacteraemia Due to Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae.
        PLoS One. 2016; 11: e0153696
        • Tamma P.D.
        • Han J.H.
        • Rock C.
        • et al.
        Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum beta-lactamase bacteremia.
        Clin Infect Dis. 2015; 60: 1319-1325
        • Tsai H.Y.
        • Chen Y.H.
        • Tang H.J.
        • et al.
        Carbapenems and piperacillin/tazobactam for the treatment of bacteremia caused by extended-spectrum beta-lactamase-producing Proteus mirabilis.
        Diagn Microbiol Infect Dis. 2014; 80: 222-226
        • Dizbay M.
        • Ozger H.S.
        • Karasahin O.
        • et al.
        Treatment efficacy and superinfection rates in complicated urinarytract infections treated with ertapenem or piperacillin tazobactam.
        Turk J Med Sci. 2016; 46: 1760-1764
        • Seo Y.B.
        • Lee J.
        • Kim Y.K.
        • et al.
        Randomized controlled trial of piperacillin-tazobactam, cefepime and ertapenem for the treatment of urinary tract infection caused by extended-spectrum beta-lactamase-producing Escherichia coli.
        BMC Infect Dis. 2017; 17: 404
        • Yoon Y.K.
        • Kim J.H.
        • Sohn J.W.
        • et al.
        Role of piperacillin/tazobactam as a carbapenem-sparing antibiotic for treatment of acute pyelonephritis due to extended-spectrum beta-lactamase-producing Escherichia coli.
        Int J Antimicrob Agents. 2017; 49: 410-415
        • Sharara S.L.
        • Amoah J.
        • Pana Z.D.
        • et al.
        Is Piperacillin-Tazobactam Effective for the Treatment of Pyelonephritis Caused by ESBL-producing Organisms?.
        Clin Infect Dis. 2019; 71: e331-e337
        • Nasir N.
        • Ahmed S.
        • Razi S.
        • et al.
        Risk factors for mortality of patients with ceftriaxone resistant E. coli bacteremia receiving carbapenem versus beta lactam/beta lactamase inhibitor therapy.
        BMC Res Notes. 2019; 12: 611
        • Xiao T.
        • Yang K.
        • Zhou Y.
        • et al.
        Risk factors and outcomes in non-transplant patients with extended-spectrum beta-lactamase-producing Escherichia coli bacteremia: a retrospective study from 2013 to 2016.
        Antimicrob Resist Infect Control. 2019; 8: 144
        • Ko J.H.
        • Lee N.R.
        • Joo E.J.
        • et al.
        Appropriate non-carbapenems are not inferior to carbapenems as initial empirical therapy for bacteremia caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae: a propensity score weighted multicenter cohort study.
        Eur J Clin Microbiol Infect Dis. 2018; 37: 305-311
        • Meini S.
        • Laureano R.
        • Tascini C.
        • et al.
        Clinical outcomes of elderly patients with bloodstream infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae in an Italian Internal Medicine ward.
        Eur J Intern Med. 2018; 48: 50-56
        • Ofer-Friedman H.
        • Shefler C.
        • Sharma S.
        • et al.
        Carbapenems Versus Piperacillin-Tazobactam for Bloodstream Infections of Nonurinary Source Caused by Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae.
        Infect Control Hosp Epidemiol. 2015; 36: 981-985
        • Bitterman R.
        • Paul M.
        • Leibovici L.
        • et al.
        PipEracillin Tazobactam Versus mERoPENem for Treatment of Bloodstream Infections Caused by Cephalosporin-resistant Enterobacteriaceae (PETERPEN).
        (Available at:) (Accessed 16 September 2021)
        • Chopra T.
        • Marchaim D.
        • Veltman J.
        • et al.
        Impact of cefepime therapy on mortality among patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli.
        Antimicrob Agents Chemother. 2012; 56: 3936-3942
        • Zanetti G.
        • Bally F.
        • Greub G.
        • et al.
        Cefepime versus imipenem-cilastatin for treatment of nosocomial pneumonia in intensive care unit patients: a multicenter, evaluator-blind, prospective, randomized study.
        Antimicrob Agents Chemother. 2003; 47: 3442-3447
        • Burgess D.S.
        • Hall 2nd, R.G.
        In vitro killing of parenteral beta-lactams against standard and high inocula of extended-spectrum beta-lactamase and non-ESBL producing Klebsiella pneumoniae.
        Diagn Microbiol Infect Dis. 2004; 49: 41-46
        • Kim S.A.
        • Altshuler J.
        • Paris D.
        • et al.
        Cefepime versus carbapenems for the treatment of urinary tract infections caused by extended-spectrum beta-lactamase-producing enterobacteriaceae.
        Int J Antimicrob Agents. 2018; 51: 155-158
        • Lepeule R.
        • Leflon-Guibout V.
        • Vanjak D.
        • et al.
        Clinical spectrum of urine cultures positive for ESBL-producing Escherichia coli in hospitalized patients and impact on antibiotic use.
        Med Mal Infect. 2014; 44: 530-534
        • Tamma P.D.
        • Conley A.T.
        • Cosgrove S.E.
        • et al.
        Association of 30-Day Mortality With Oral Step-Down vs Continued Intravenous Therapy in Patients Hospitalized With Enterobacteriaceae Bacteremia.
        JAMA Intern Med. 2019; 179: 316-323
        • Punjabi C.
        • Tien V.
        • Meng L.
        • et al.
        Oral Fluoroquinolone or Trimethoprim-sulfamethoxazole vs. beta-lactams as Step-Down Therapy for Enterobacteriaceae Bacteremia: Systematic Review and Meta-analysis.
        Open Forum Infect Dis. 2019; 6: ofz364
      4. GlaxoSmithKline. AUGMENTIN® (amoxicillin/clavulanate potassium): Powder for Oral Suspension and Chewable Tablets [Package Insert].
        (Available at:) (Accessed 14 September 2021)
      5. Centers for Disease Control and Prevention. Facility Guidance for Control of Carbapenem-resistant Enterobacteriaceae (CRE): November 2015 Update - CRE Toolkit, 2015. Available at: https://www.cdc.gov/hai/pdfs/cre/cre-guidance-508.pdf.

        • Sabour S.
        • Huang Y.
        • Bhatnagar A.
        • et al.
        Detection and Characterization of Targeted Carbapenem-Resistant Healthcare-Associated Threats: Findings from The Antibiotic Resistance Laboratory Network, 2017 to 2019.
        Antimicrob Agents Chemother. 2021; 65: e0110521
        • van Duin D.
        • Arias C.A.
        • Komarow L.
        • et al.
        Molecular and clinical epidemiology of carbapenem-resistant Enterobacterales in the USA (CRACKLE-2): a prospective cohort study.
        Lancet Infect Dis. 2020; 20: 731-741
        • Aitken S.L.
        • Tarrand J.J.
        • Deshpande L.M.
        • et al.
        High Rates of Nonsusceptibility to Ceftazidime-avibactam and Identification of New Delhi Metallo-beta-lactamase Production in Enterobacteriaceae Bloodstream Infections at a Major Cancer Center.
        Clin Infect Dis. 2016; 63: 954-958
        • Senchyna F.
        • Gaur R.L.
        • Sandlund J.
        • et al.
        Diversity of resistance mechanisms in carbapenem-resistant Enterobacteriaceae at a health care system in Northern California, from 2013 to 2016.
        Diagn Microbiol Infect Dis. 2019; 93: 250-257
        • Tamma P.D.
        • Simner P.J.
        Phenotypic Detection of Carbapenemase-Producing Organisms from Clinical Isolates.
        J Clin Microbiol. 2018; 56: e01140-18
        • Spiliopoulou I.
        • Kazmierczak K.
        • Stone G.G.
        In vitro activity of ceftazidime/avibactam against isolates of carbapenem-non-susceptible Enterobacteriaceae collected during the INFORM global surveillance programme (2015-17).
        J Antimicrob Chemother. 2020; 75: 384-391
        • Castanheira M.
        • Doyle T.B.
        • Collingsworth T.D.
        • et al.
        Increasing frequency of OXA-48-producing Enterobacterales worldwide and activity of ceftazidime/avibactam, meropenem/vaborbactam and comparators against these isolates.
        J Antimicrob Chemother. 2021; 76: 3125-3134
        • Castanheira M.
        • Doyle T.B.
        • Kantro V.
        • et al.
        Meropenem-Vaborbactam Activity against Carbapenem-Resistant Enterobacterales Isolates Collected in U.S. Hospitals during 2016 to 2018.
        Antimicrob Agents Chemother. 2020; 64: e01951-19
        • Pfaller M.A.
        • Huband M.D.
        • Mendes R.E.
        • et al.
        In vitro activity of meropenem/vaborbactam and characterisation of carbapenem resistance mechanisms among carbapenem-resistant Enterobacteriaceae from the 2015 meropenem/vaborbactam surveillance programme.
        Int J Antimicrob Agents. 2018; 52: 144-150
        • Tamma P.D.
        • Hsu A.J.
        Defining the Role of Novel beta-Lactam Agents That Target Carbapenem-Resistant Gram-Negative Organisms.
        J Pediatr Infect Dis Soc. 2019; 8: 251-260
        • Sandri A.M.
        • Landersdorfer C.B.
        • Jacob J.
        • et al.
        Population pharmacokinetics of intravenous polymyxin B in critically ill patients: implications for selection of dosage regimens.
        Clin Infect Dis. 2013; 57: 524-531
        • Dobias J.
        • Denervaud-Tendon V.
        • Poirel L.
        • et al.
        Activity of the novel siderophore cephalosporin cefiderocol against multidrug-resistant Gram-negative pathogens.
        Eur J Clin Microbiol Infect Dis. 2017; 36: 2319-2327
        • Humphries R.M.
        • Yang S.
        • Hemarajata P.
        • et al.
        First Report of Ceftazidime-Avibactam Resistance in a KPC-3-Expressing Klebsiella pneumoniae Isolate.
        Antimicrob Agents Chemother. 2015; 59: 6605-6607
        • Biagi M.
        • Wu T.
        • Lee M.
        • et al.
        Searching for the Optimal Treatment for Metallo- and Serine-beta-Lactamase Producing Enterobacteriaceae: Aztreonam in Combination with Ceftazidime-avibactam or Meropenem-vaborbactam.
        Antimicrob Agents Chemother. 2019; 63: e01426-19
        • Sieswerda E.
        • van den Brand M.
        • van den Berg R.B.
        • et al.
        Successful rescue treatment of sepsis due to a pandrug-resistant, NDM-producing Klebsiella pneumoniae using aztreonam powder for nebulizer solution as intravenous therapy in combination with ceftazidime/avibactam.
        J Antimicrob Chemother. 2020; 75: 773-775
        • Benchetrit L.
        • Mathy V.
        • Armand-Lefevre L.
        • et al.
        Successful treatment of septic shock due to NDM-1-producing Klebsiella pneumoniae using ceftazidime/avibactam combined with aztreonam in solid organ transplant recipients: report of two cases.
        Int J Antimicrob Agents. 2020; 55: 105842
        • Falcone M.
        • Daikos G.L.
        • Tiseo G.
        • et al.
        Efficacy of Ceftazidime-avibactam Plus Aztreonam in Patients With Bloodstream Infections Caused by Metallo-beta-lactamase-Producing Enterobacterales.
        Clin Infect Dis. 2021; 72: 1871-1878
        • Lodise T.P.
        • Smith N.M.
        • O'Donnell N.
        • et al.
        Determining the optimal dosing of a novel combination regimen of ceftazidime/avibactam with aztreonam against NDM-1-producing Enterobacteriaceae using a hollow-fibre infection model.
        J Antimicrob Chemother. 2020; 75: 2622-2632
        • De la Calle C.
        • Rodriguez O.
        • Morata L.
        • et al.
        Clinical characteristics and prognosis of infections caused by OXA-48 carbapenemase-producing Enterobacteriaceae in patients treated with ceftazidime-avibactam.
        Int J Antimicrob Agents. 2019; 53: 520-524
        • Eckmann C.
        • Montravers P.
        • Bassetti M.
        • et al.
        Efficacy of tigecycline for the treatment of complicated intra-abdominal infections in real-life clinical practice from five European observational studies.
        J Antimicrob Chemother. 2013; 68: ii25-ii35
        • Chen Z.
        • Shi X.
        Adverse events of high-dose tigecycline in the treatment of ventilator-associated pneumonia due to multidrug-resistant pathogens.
        Medicine (Baltimore). 2018; 97: e12467
        • Shields R.K.
        • Nguyen M.H.
        • Chen L.
        • et al.
        Ceftazidime-Avibactam Is Superior to Other Treatment Regimens against Carbapenem-Resistant Klebsiella pneumoniae Bacteremia.
        Antimicrob Agents Chemother. 2017; 61: e00883-17
        • van Duin D.
        • Lok J.J.
        • Earley M.
        • et al.
        Colistin Versus Ceftazidime-Avibactam in the Treatment of Infections Due to Carbapenem-Resistant Enterobacteriaceae.
        Clin Infect Dis. 2018; 66: 163-171
        • Wunderink R.G.
        • Giamarellos-Bourboulis E.J.
        • Rahav G.
        • et al.
        Effect and Safety of Meropenem-Vaborbactam versus Best-Available Therapy in Patients with Carbapenem-Resistant Enterobacteriaceae Infections: The TANGO II Randomized Clinical Trial.
        Infect Dis Ther. 2018; 7: 439-455
        • Motsch J.
        • Murta de Oliveira C.
        • Stus V.
        • et al.
        RESTORE-IMI 1: A Multicenter, Randomized, Double-blind Trial Comparing Efficacy and Safety of Imipenem/Relebactam vs Colistin Plus Imipenem in Patients With Imipenem-nonsusceptible Bacterial Infections.
        Clin Infect Dis. 2020; 70: 1799-1808
        • Karaiskos I.
        • Daikos G.L.
        • Gkoufa A.
        • et al.
        Ceftazidime/avibactam in the era of carbapenemase-producing Klebsiella pneumoniae: experience from a national registry study.
        J Antimicrob Chemother. 2021; 76: 775-783
        • Hakeam H.A.
        • Alsahli H.
        • Albabtain L.
        • et al.
        Effectiveness of ceftazidime-avibactam versus colistin in treating carbapenem-resistant Enterobacteriaceae bacteremia.
        Int J Infect Dis. 2021; 109: 1-7
        • Caston J.J.
        • Lacort-Peralta I.
        • Martin-Davila P.
        • et al.
        Clinical efficacy of ceftazidime/avibactam versus other active agents for the treatment of bacteremia due to carbapenemase-producing Enterobacteriaceae in hematologic patients.
        Int J Infect Dis. 2017; 59: 118-123
        • Alraddadi B.M.
        • Saeedi M.
        • Qutub M.
        • et al.
        Efficacy of ceftazidime-avibactam in the treatment of infections due to Carbapenem-resistant Enterobacteriaceae.
        BMC Infect Dis. 2019; 19: 772
        • Tumbarello M.
        • Trecarichi E.M.
        • Corona A.
        • et al.
        Efficacy of Ceftazidime-Avibactam Salvage Therapy in Patients With Infections Caused by Klebsiella pneumoniae Carbapenemase-producing K. pneumoniae.
        Clin Infect Dis. 2019; 68: 355-364
        • Shields R.K.
        • Chen L.
        • Cheng S.
        • et al.
        Emergence of Ceftazidime-Avibactam Resistance Due to Plasmid-Borne blaKPC-3 Mutations during Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections.
        Antimicrob Agents Chemother. 2017; 61: e02097-16
        • Shields R.K.
        • Potoski B.A.
        • Haidar G.
        • et al.
        Clinical Outcomes, Drug Toxicity, and Emergence of Ceftazidime-Avibactam Resistance Among Patients Treated for Carbapenem-Resistant Enterobacteriaceae Infections.
        Clin Infect Dis. 2016; 63: 1615-1618
        • Shields R.K.
        • McCreary E.K.
        • Marini R.V.
        • et al.
        Early experience with meropenem-vaborbactam for treatment of carbapenem-resistant Enterobacteriaceae infections.
        Clin Infect Dis. 2019; 71: 667-671
        • Shields R.K.
        • Iovleva A.
        • Kline E.G.
        • et al.
        Clinical evolution of AmpC-mediated ceftazidime-avibactam and cefiderocol resistance in Enterobacter cloacae complex following exposure to cefepime.
        Clin Infect Dis. 2020; 71: 2713-2716
        • Shields R.K.
        • Nguyen M.H.
        • Chen L.
        • et al.
        Pneumonia and Renal Replacement Therapy Are Risk Factors for Ceftazidime-Avibactam Treatment Failures and Resistance among Patients with Carbapenem-Resistant Enterobacteriaceae Infections.
        Antimicrob Agents Chemother. 2018; 62: e02497-17
        • Alosaimy S.
        • Lagnf A.M.
        • Morrisette T.
        • et al.
        Real-world, Multicenter Experience With Meropenem-Vaborbactam for Gram-Negative Bacterial Infections Including Carbapenem-Resistant Enterobacterales and Pseudomonas aeruginosa.
        Open Forum Infect Dis. 2021; 8: ofab371
        • Kadri S.S.
        • Adjemian J.
        • Lai Y.L.
        • et al.
        Difficult-to-Treat Resistance in Gram-negative Bacteremia at 173 US Hospitals: Retrospective Cohort Analysis of Prevalence, Predictors, and Outcome of Resistance to All First-line Agents.
        Clin Infect Dis. 2018; 67: 1803-1814
        • Magiorakos A.P.
        • Srinivasan A.
        • Carey R.B.
        • et al.
        Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.
        Clin Microbiol Infect. 2012; 18: 268-281
        • Lister P.D.
        • Wolter D.J.
        • Hanson N.D.
        Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms.
        Clin Microbiol Rev. 2009; 22: 582-610
        • Wolter D.J.
        • Lister P.D.
        Mechanisms of beta-lactam resistance among Pseudomonas aeruginosa.
        Curr Pharm Des. 2013; 19: 209-222
        • Karlowsky J.A.
        • Kazmierczak K.M.
        • de Jonge B.L.M.
        • et al.
        In Vitro Activity of Aztreonam-Avibactam against Enterobacteriaceae and Pseudomonas aeruginosa Isolated by Clinical Laboratories in 40 Countries from 2012 to 2015.
        Antimicrob Agents Chemother. 2017; 61: e00472-17
        • Karlowsky J.A.
        • Kazmierczak K.M.
        • Bouchillon S.K.
        • et al.
        In Vitro Activity of Ceftazidime-Avibactam against Clinical Isolates of Enterobacteriaceae and Pseudomonas aeruginosa Collected in Asia-Pacific Countries: Results from the INFORM Global Surveillance Program, 2012 to 2015.
        Antimicrob Agents Chemother. 2018; 62: e02569-17
        • Buehrle D.J.
        • Shields R.K.
        • Chen L.
        • et al.
        Evaluation of the In Vitro Activity of Ceftazidime-Avibactam and Ceftolozane-Tazobactam against Meropenem-Resistant Pseudomonas aeruginosa Isolates.
        Antimicrob Agents Chemother. 2016; 60: 3227-3231
        • Rolston K.V.I.
        • Gerges B.
        • Shelburne S.
        • et al.
        Activity of Cefiderocol and Comparators against Isolates from Cancer Patients.
        Antimicrob Agents Chemother. 2020; 64: e01955-19
        • Falagas M.E.
        • Skalidis T.
        • Vardakas K.Z.
        • et al.
        Activity of cefiderocol (S-649266) against carbapenem-resistant Gram-negative bacteria collected from inpatients in Greek hospitals.
        J Antimicrob Chemother. 2017; 72: 1704-1708
        • Golden A.R.
        • Adam H.J.
        • Baxter M.
        • et al.
        In Vitro Activity of Cefiderocol, a Novel Siderophore Cephalosporin, against Gram-Negative Bacilli Isolated from Patients in Canadian Intensive Care Units.
        Diagn Microbiol Infect Dis. 2020; 97: 115012
        • Hackel M.A.
        • Tsuji M.
        • Yamano Y.
        • et al.
        In Vitro Activity of the Siderophore Cephalosporin, Cefiderocol, against Carbapenem-Nonsusceptible and Multidrug-Resistant Isolates of Gram-Negative Bacilli Collected Worldwide in 2014 to 2016.
        Antimicrob Agents Chemother. 2018; 62: e01968-17
        • Karlowsky J.A.
        • Hackel M.A.
        • Tsuji M.
        • et al.
        In Vitro Activity of Cefiderocol, a Siderophore Cephalosporin, Against Gram-Negative Bacilli Isolated by Clinical Laboratories in North America and Europe in 2015-2016: SIDERO-WT-2015.
        Int J Antimicrob Agents. 2019; 53: 456-466
        • Bassetti M.
        • Echols R.
        • Matsunaga Y.
        • et al.
        Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial.
        Lancet Infect Dis. 2021; 21: 226-240
        • Pogue J.M.
        • Kaye K.S.
        • Veve M.P.
        • et al.
        Ceftolozane/Tazobactam vs Polymyxin or Aminoglycoside-based Regimens for the Treatment of Drug-resistant Pseudomonas aeruginosa.
        Clin Infect Dis. 2020; 71: 304-310
        • Stone G.G.
        • Newell P.
        • Gasink L.B.
        • et al.
        Clinical activity of ceftazidime/avibactam against MDR Enterobacteriaceae and Pseudomonas aeruginosa: pooled data from the ceftazidime/avibactam Phase III clinical trial programme.
        J Antimicrob Chemother. 2018; 73: 2519-2523
        • Vijayakumar S.
        • Biswas I.
        • Veeraraghavan B.
        Accurate identification of clinically important Acinetobacter spp.: an update.
        Future Sci OA. 2019; 5: FSO395
        • Bonomo R.A.
        • Szabo D.
        Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa.
        Clin Infect Dis. 2006; 43: S49-S56
        • Penwell W.F.
        • Shapiro A.B.
        • Giacobbe R.A.
        • et al.
        Molecular mechanisms of sulbactam antibacterial activity and resistance determinants in Acinetobacter baumannii.
        Antimicrob Agents Chemother. 2015; 59: 1680-1689
        • McLeod S.M.
        • Shapiro A.B.
        • Moussa S.H.
        • et al.
        Frequency and Mechanism of Spontaneous Resistance to Sulbactam Combined with the Novel beta-Lactamase Inhibitor ETX2514 in Clinical Isolates of Acinetobacter baumannii.
        Antimicrob Agents Chemother. 2018; 62: e01576-17
        • Krizova L.
        • Poirel L.
        • Nordmann P.
        • et al.
        TEM-1 beta-lactamase as a source of resistance to sulbactam in clinical strains of Acinetobacter baumannii.
        J Antimicrob Chemother. 2013; 68: 2786-2791
        • Liu J.
        • Shu Y.
        • Zhu F.
        • et al.
        Comparative efficacy and safety of combination therapy with high-dose sulbactam or colistin with additional antibacterial agents for multiple drug-resistant and extensively drug-resistant Acinetobacter baumannii infections: A systematic review and network meta-analysis.
        J Glob Antimicrob Resist. 2021; 24: 136-147
        • Jung S.Y.
        • Lee S.H.
        • Lee S.Y.
        • et al.
        Antimicrobials for the treatment of drug-resistant Acinetobacter baumannii pneumonia in critically ill patients: a systemic review and Bayesian network meta-analysis.
        Crit Care. 2017; 21: 319
        • Yilmaz G.R.
        • Guven T.
        • Guner R.
        • et al.
        Colistin alone or combined with sulbactam or carbapenem against A. baumannii in ventilator-associated pneumonia.
        J Infect Dev Ctries. 2015; 9: 476-485
        • Paul M.
        • Daikos G.L.
        • Durante-Mangoni E.
        • et al.
        Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial.
        Lancet Infect Dis. 2018; 18: 391-400
        • Sirijatuphat R.
        • Thamlikitkul V.
        Preliminary study of colistin versus colistin plus fosfomycin for treatment of carbapenem-resistant Acinetobacter baumannii infections.
        Antimicrob Agents Chemother. 2014; 58: 5598-5601
        • Durante-Mangoni E.
        • Signoriello G.
        • Andini R.
        • et al.
        Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial.
        Clin Infect Dis. 2013; 57: 349-358
        • Aydemir H.
        • Akduman D.
        • Piskin N.
        • et al.
        Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia.
        Epidemiol Infect. 2013; 141: 1214-1222
        • Park H.J.
        • Cho J.H.
        • Kim H.J.
        • et al.
        Colistin monotherapy versus colistin/rifampicin combination therapy in pneumonia caused by colistin-resistant Acinetobacter baumannii: A randomised controlled trial.
        J Glob Antimicrob Resist. 2019; 17: 66-71
        • Makris D.
        • Petinaki E.
        • Tsolaki V.
        • et al.
        Colistin versus Colistin Combined with Ampicillin-Sulbactam for Multiresistant Acinetobacter baumannii Ventilator-associated Pneumonia Treatment: An Open-label Prospective Study.
        Indian J Crit Care Med. 2018; 22: 67-77
        • Brooke J.S.
        Stenotrophomonas maltophilia: an emerging global opportunistic pathogen.
        Clin Microbiol Rev. 2012; 25: 2-41
        • Trifonova A.
        • Strateva T.
        Stenotrophomonas maltophilia - a low-grade pathogen with numerous virulence factors.
        Infect Dis (Lond). 2019; 51: 168-178
        • Okazaki A.
        • Avison M.B.
        Aph(3')-IIc, an aminoglycoside resistance determinant from Stenotrophomonas maltophilia.
        Antimicrob Agents Chemother. 2007; 51: 359-360
        • Gordon N.C.
        • Wareham D.W.
        Novel variants of the Smqnr family of quinolone resistance genes in clinical isolates of Stenotrophomonas maltophilia.
        J Antimicrob Chemother. 2010; 65: 483-489
        • Khan A.
        • Pettaway C.
        • Dien Bard J.
        • et al.
        Evaluation of the Performance of Manual Antimicrobial Susceptibility Testing Methods and Disk Breakpoints for Stenotrophomonas maltophilia.
        Antimicrob Agents Chemother. 2021; 65: e02631-20
        • Khan A.
        • Arias C.A.
        • Abbott A.
        • et al.
        Evaluation of the Vitek 2, Phoenix and Microscan for Antimicrobial Susceptibility Testing of Stenotrophomonas maltophilia.
        J Clin Microbiol. 2021; 59: e0065421
        • Wei C.
        • Ni W.
        • Cai X.
        • et al.
        Evaluation of Trimethoprim/Sulfamethoxazole (SXT), Minocycline, Tigecycline, Moxifloxacin, and Ceftazidime Alone and in Combinations for SXT-Susceptible and SXT-Resistant Stenotrophomonas maltophilia by In Vitro Time-Kill Experiments.
        PLoS One. 2016; 11: e0152132
        • Al-Jasser A.M.
        Stenotrophomonas maltophilia resistant to trimethoprim-sulfamethoxazole: an increasing problem.
        Ann Clin Microbiol Antimicrob. 2006; 5: 23
        • Cho S.Y.
        • Kang C.I.
        • Kim J.
        • et al.
        Can levofloxacin be a useful alternative to trimethoprim-sulfamethoxazole for treating Stenotrophomonas maltophilia bacteremia?.
        Antimicrob Agents Chemother. 2014; 58: 581-583
        • Baek J.H.
        • Kim C.O.
        • Jeong S.J.
        • et al.
        Clinical factors associated with acquisition of resistance to levofloxacin in Stenotrophomonas maltophilia.
        Yonsei Med J. 2014; 55: 987-993
        • Wei C.
        • Ni W.
        • Cai X.
        • et al.
        A Monte Carlo pharmacokinetic/pharmacodynamic simulation to evaluate the efficacy of minocycline, tigecycline, moxifloxacin, and levofloxacin in the treatment of hospital-acquired pneumonia caused by Stenotrophomonas maltophilia.
        Infect Dis (Lond). 2015; 47: 846-851
        • Grillon A.
        • Schramm F.
        • Kleinberg M.
        • Jehl F.
        Comparative Activity of Ciprofloxacin, Levofloxacin and Moxifloxacin against Klebsiella pneumoniae, Pseudomonas aeruginosa and Stenotrophomonas maltophilia Assessed by Minimum Inhibitory Concentrations and Time-Kill Studies.
        PLoS One. 2016; 11: e0156690
        • Ba B.B.
        • Feghali H.
        • Arpin C.
        • et al.
        Activities of ciprofloxacin and moxifloxacin against Stenotrophomonas maltophilia and emergence of resistant mutants in an in vitro pharmacokinetic-pharmacodynamic model.
        Antimicrob Agents Chemother. 2004; 48: 946-953
        • Nys C.
        • Cherabuddi K.
        • Venugopalan V.
        • et al.
        Clinical and Microbiologic Outcomes in Patients with Monomicrobial Stenotrophomonas maltophilia Infections.
        Antimicrob Agents Chemother. 2019; 63: e00788-19
        • Bonfiglio G.
        • Cascone C.
        • Azzarelli C.
        • et al.
        Levofloxacin in vitro activity and time-kill evaluation of Stenotrophomonas maltophilia clinical isolates.
        J Antimicrob Chemother. 2000; 45: 115-117
        • Biagi M.
        • Tan X.
        • Wu T.
        • et al.
        Activity of Potential Alternative Treatment Agents for Stenotrophomonas maltophilia Isolates Nonsusceptible to Levofloxacin and/or Trimethoprim-Sulfamethoxazole.
        J Clin Microbiol. 2020; 58: e01603-19
        • Looney W.J.
        • Narita M.
        • Muhlemann K.
        Stenotrophomonas maltophilia: an emerging opportunist human pathogen.
        Lancet Infect Dis. 2009; 9: 312-323
        • Farrell D.J.
        • Sader H.S.
        • Jones R.N.
        Antimicrobial susceptibilities of a worldwide collection of Stenotrophomonas maltophilia isolates tested against tigecycline and agents commonly used for S. maltophilia infections.
        Antimicrob Agents Chemother. 2010; 54: 2735-2737
        • Giamarellos-Bourboulis E.J.
        • Karnesis L.
        • Galani I.
        • et al.
        In vitro killing effect of moxifloxacin on clinical isolates of Stenotrophomonas maltophilia resistant to trimethoprim-sulfamethoxazole.
        Antimicrob Agents Chemother. 2002; 46: 3997-3999
        • Biagi M.
        • Vialichka A.
        • Jurkovic M.
        • et al.
        Activity of Cefiderocol Alone and in Combination with Levofloxacin, Minocycline, Polymyxin B, or Trimethoprim-Sulfamethoxazole against Multidrug-Resistant Stenotrophomonas maltophilia.
        Antimicrob Agents Chemother. 2020; 64: e00559-20
        • Hsueh S.C.
        • Lee Y.J.
        • Huang Y.T.
        • et al.
        In vitro activities of cefiderocol, ceftolozane/tazobactam, ceftazidime/avibactam and other comparative drugs against imipenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, and Stenotrophomonas maltophilia, all associated with bloodstream infections in Taiwan.
        J Antimicrob Chemother. 2019; 74: 380-386
        • Yamano Y.
        In Vitro Activity of Cefiderocol Against a Broad Range of Clinically Important Gram-negative Bacteria.
        Clin Infect Dis. 2019; 69: S544-S551
        • Chen I.H.
        • Kidd J.M.
        • Abdelraouf K.
        • et al.
        Comparative In Vivo Antibacterial Activity of Human-Simulated Exposures of Cefiderocol and Ceftazidime against Stenotrophomonas maltophilia in the Murine Thigh Model.
        Antimicrob Agents Chemother. 2019; 63: e01558-19
        • Biagi M.
        • Lamm D.
        • Meyer K.
        • et al.
        Activity of Aztreonam in Combination with Avibactam, Clavulanate, Relebactam, and Vaborbactam against Multidrug-Resistant Stenotrophomonas maltophilia.
        Antimicrob Agents Chemother. 2020; 64: e00297-20
        • Mojica M.F.
        • Papp-Wallace K.M.
        • Taracila M.A.
        • et al.
        Avibactam Restores the Susceptibility of Clinical Isolates of Stenotrophomonas maltophilia to Aztreonam.
        Antimicrob Agents Chemother. 2017; 61: e00777-17
        • Hand E.
        • Davis H.
        • Kim T.
        • et al.
        Monotherapy with minocycline or trimethoprim/sulfamethoxazole for treatment of Stenotrophomonas maltophilia infections.
        J Antimicrob Chemother. 2016; 71: 1071-1075
        • Lin Q.
        • Zou H.
        • Chen X.
        • et al.
        Avibactam potentiated the activity of both ceftazidime and aztreonam against S. maltophilia clinical isolates in vitro.
        BMC Microbiol. 2021; 21: 60
        • Sader H.S.
        • Duncan L.R.
        • Arends S.J.R.
        • et al.
        Antimicrobial Activity of Aztreonam-Avibactam and Comparator Agents When Tested against a Large Collection of Contemporary Stenotrophomonas maltophilia Isolates from Medical Centers Worldwide.
        Antimicrob Agents Chemother. 2020; 64: e01433-20
        • Emeraud C.
        • Escaut L.
        • Boucly A.
        • et al.
        Aztreonam plus Clavulanate, Tazobactam, or Avibactam for Treatment of Infections Caused by Metallo-beta-Lactamase-Producing Gram-Negative Bacteria.
        Antimicrob Agents Chemother. 2019; 63: e00010-19
        • Mojica M.F.
        • Ouellette C.P.
        • Leber A.
        • et al.
        Successful Treatment of Bloodstream Infection Due to Metallo-beta-Lactamase-Producing Stenotrophomonas maltophilia in a Renal Transplant Patient.
        Antimicrob Agents Chemother. 2016; 60: 5130-5134
        • Muder R.R.
        • Harris A.P.
        • Muller S.
        • et al.
        Bacteremia due to Stenotrophomonas (Xanthomonas) maltophilia: a prospective, multicenter study of 91 episodes.
        Clin Infect Dis. 1996; 22: 508-512
        • Sarzynski S.H.
        • Warner S.
        • Sun J.
        • et al.
        Trimethoprim-Sulfamethoxazole Versus Levofloxacin for Stenotrophomonas maltophilia Infections: A Retrospective Comparative Effectiveness Study of Electronic Health Records from 154 US Hospitals.
        Open Forum Infect Dis. 2022; 9: ofab644
        • Jacobson S.
        • Junco Noa L.
        • Wallace M.R.
        • et al.
        Clinical outcomes using minocycline for Stenotrophomonas maltophilia infections.
        J Antimicrob Chemother. 2016; 71: 3620
        • Grillon A.
        • Schramm F.
        • Kleinberg M.
        • et al.
        Comparative Activity of Ciprofloxacin, Levofloxacin and Moxifloxacin against Klebsiella pneumoniae, Pseudomonas aeruginosa and Stenotrophomonas maltophilia Assessed by Minimum Inhibitory Concentrations and Time-Kill Studies.
        PLoS One. 2016; 11: e0156690